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Automatic vehiclelocation (AVL) and computer-aided dispatch (CAD)
systems have afforded a unique opportunity for public transit agencies
tointegratethesetechnologiesin their paratransit systemsfor improved
productivity and reliability. This opportunity has also prompted wide-
spread interest in quantifying the benefits that can be attained from
such technological enhancement. This resear ch assesses the potential
effectsof AVL and CAD on the productivity and servicerédliability of a
paratransit system. A simulation model that can realistically model
AVL and CAD functionality is used in the investigation. Many cases
representing variations in operating environment, such as service
area, demand intensity, and proportion of real-timedemand trips, are
simulated for a sensitivity analysis under three assumed operational
improvements—en route diversion, dwell time reduction, and periodic
reoptimization. Theresultsindicatethat although AVL and CAD effec-
tiveness varies from case to case, on aver age, these systems can help to
substantially improve paratransit performance.

Operation of a dial-a-ride paratransit service requires a mesh of
interrelated managerial functions, such astrip reservation, vehicle
monitoring, scheduling and dispatching, and business reporting.
Each of these functions can potentially be made more efficient and
reliable with the support of advanced information technologies
such as computers, automatic vehiclelocation (AVL), and telecom-
munications (1-5). For example, telecommunications systems
enable constant link among customers, vehicle operators, and dis-
patchers, who therefore can respond promptly and effectively to
any changesin system conditions. AVL systems enable continuous
monitoring and tracking of fleet vehicles and their schedules, pro-
viding dynamic scheduling with real-time information. Computer-
aided dispatch (CAD) systems automate dynamic scheduling, such
as inserting real-time demand trips into existing routes and reas-
signing scheduled trips among routes, offering the opportunity for
increased productivity and reliability. Although these potential
benefits have been widely recognized, little evidence is available
on their potential magnitude. The objective of this research is to
conduct asystematic investigation of the effectiveness of AVL and
CAD in improving the productivity and reliability of dial-a-ride
paratransit systems.
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Research on quantifying AVL and CAD benefits was first initi-
ated by Wilson et al., who performed an extensive simulation study
with various operational assumptions on systems with and without
AVL (6, 7). That research concluded that, on average, a 10 percent
increase in vehicle productivity could be expected by using a con-
tinuous location system. The dial-a-ride systems studied were red
time, and all trips were assumed to be same-day, immediate
reguests. Latest developments in intelligent transportation systems
have generated a renewed interest in evaluating the cost-effective-
ness of technologies and numerous field studies have been con-
ducted for regular transit and paratransit (8-10). Hardin et a. con-
ducted a field study of a paratransit service provider in Miami,
Florida, on AVL potential in improving paratransit productivity
(11). The study found that AVL technology was not particularly
useful in the selected application. However, significant benefits
could have resulted if real-time information provided by AVL had
been adequately used in the management process. Recently, Higgins
et al. reported a 10.3 percent increase in vehicle productivity from
using AVL technology and advanced scheduling systems on Hous-
ton Metro's paratransit service (12). Although afield study isvalu-
ablein providing firsthand experience, it also has many limitations,
including difficulties in transferring experience between different
sites because of the interdependence between system performance
and underlying operating conditions, and in isol ating benefits attrib-
utable to specific technology components. Further, afield study is
often constrained by the scheduling system of the paratransit
provider, which may not have the functionality required for taking
advantage of real-timeinformation (5).

An overview is presented of the methodology applied in the
comparative analysis, focusing on how systems with and without
AVL and CAD are modeled. The results of a series of simulation
experiments are described, to identify the relationship between the
potential AVL and CAD benefits and underlying operating condi-
tions. Finally, conclusions and future research directions are high-
lighted.

METHODOLOGY

To compare the relative performance of systems with and without
AVL and CAD, asimulation system, SimParatransit, is used to gen-
erate data required for the analysis. SimParatransit is a smulation
model developed specifically for evaluating advanced paratransit
systems under various operating conditions, technology options,
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and dispatching strategies, as described by Fu in this Record,
pp. 93-99. The modeling methodologies applied in SimParatransit
areasfollows:

* Simulation of the detailed activities of individual vehiclesin
service, starting from accepting their assigned routes and schedules,
to moving from street to street along the shortest path, to picking up
or dropping off customers. The street network in the service areais
explicitly modeled, with time-dependent, stochastic travel speed on
individual roads.

* Modeling of variousreal-time events, including late vehicles,
real-time requests, trip cancellations, and dispatcher-related events
such as periodic schedul e reoptimization.

* Interactive simulation (dispatching) under which a user can
act as a dispatcher and make dispatching decisions in response to
computer-generated, real-time events.

» Explicit modeling of AVL and CAD functionality. The simu-
lation system models AVL as the means for a dispatcher to access
the coordinates of service vehicles and models CAD with a set of
dynamic scheduling functions.

Although AVL technology provides vehicle location datain real
time, it is the dynamic scheduling component CAD that uses the
available data to improve system productivity and reliability. In
SimParatransit, the AVL and CAD functionality is modeled with
regard to additional operational flexibility and information that these
technologies could provide, including en route diversion, reduction
in dwell time, and periodic reoptimization.

En Route Diversion

A primary CAD function is to determine how to assign real-time
demand tripsto vehicles already in service with a given set of routes
and schedules. The SimParatransit simulation model extends the
dynamic assignment algorithm from the algorithm for the static ver-
sion of dial-a-ride problemswith aset of modified objectivefunctions
and constraints (13). The algorithm can be summarized asfollows:

* The dynamic assignment algorithm findsan insertion that min-
imizes the total additional cost from the insertion. The additional
cost is defined as aweighted combination of the cost to the service
provider (total servicetime) and total disutility to existing and new
clients. The disutility to clientsis represented by waiting time and
excessiveridetime. For clients already on schedule (advance reser-
vation trips), waiting time is defined as the difference between the
promised arrival time (arrival time scheduled before service starts)
and the expected arrival time after the insertion. For real-time
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demand trips, waiting time is defined as the difference between the
request time and the scheduled pickup time. Excessridetimeisextra
ride time compared with a customer’ s direct ride time (without any
diversion to other customers).

* The scheduling algorithm must consider a set of operational
constraints, including seating requirements, vehicle availability,
pickup and drop-off timewindows, and maximum allowablewaiting
and ride times. For schedule vaidity, the scheduling process guar-
anteesthat the number of customers on each vehicle does not exceed
the capacity of each seating type at each stop along the route. For
real-time demand trips, thetimewindow issimply determined on the
basis of request time and maximum allowable waiting time, whereas
for advance reservation trips, absolute latest pickup and drop-off
times need to be considered.

AnAVL systemismodeled differently from onewithout AVL on
thebasis of two operational assumptions, similar toWilsonetal. (7):

1. Inan AVL system (Figure 1a), each vehicle that is traveling
to the next stop according to its schedule may be diverted en route
by the dispatcher to pick up anew client. Such a diversion is made
only if is efficient and does not adversely affect service to existing
clients.

2. Conversely inasystemwithout AVL (Figure 1b), thelocation
of each vehicleis not aways known by the dispatching center. The
assumption isthat avehicleis not diverted from itsimmediate des-
tination for a new client. However, adiversion is allowed after the
first stop along the route, because the location of that stop is known
to the dispatcher.

The model is biased somewhat to overestimating the efficiency
of systems without AVL, because it assumes the systems without
AVL have some type of dynamic scheduling and communications
ability. As aresult, acomparison based on this en route diversion
model should be considered only when comparing systems with
AVL and CAD and oneswith CAD only.

Reduction in Dwell Time

A second effect of AVL and CAD systemsisapotential decreasein
the time required for a vehicle to pick up a customer. The basic
premise is that if customers can check the real-time location of
AV L-equipped vehiclesand their expected pickup time (e.g., viathe
Internet), they could get ready for travel before the vehicles arrive.
This means that the dwell time at pickup stops may be reduced for
a system with AVL and CAD. SimParatransit enables the user to

»)

FIGURE 1 Dynamic scheduling: (a) with AVL; (b) without AVL (trips 1 and 2: advance reservation trips; trip 3:

real-time demand trip).
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specify themean and variance of dwell timesfor individual tripsand
thus the analysis of dwell time reduction effects.

Periodic Reoptimization

By tracking individual service vehicles (AVL) and dynamically
updating schedules (CAD), vehicle schedules can be reoptimized
periodically for more efficient and reliable operations. Such areopti-
mization capability is especialy attractive in an operating environ-
ment subject to large variations because of factors such as real-time
requests, trip cancellations and no-shows, and time-varying traffic
congestion. These variations would likely result in conditions that
deviate substantially from the conditions assumed when schedules
were prepared or dispatching actionswere performed. Reoptimization
may take place on threeincreasingly complex levels—(a) reschedul -
ing the times of afixed route (sequence of stops on the routeisto
be maintained), (b) resequencing the order of stopson aroute, and
(c) reassigning trips from one route to another. From a theoretical
point of view, the benefits attainable from reoptimization should
increase as the scale and frequency of reoptimization increase. How-
ever, frequent changes in vehicle schedules may cause problems for
dispatchers, drivers, or even clients, and therefore may not be accept-
ablein practice even if technologically feasible. Therefore, a reopti-
mization strategy, removing and reinserting (RR) algorithm, hasbeen
devised, whose objective isacontrollable bal ance between maximiz-
ing reoptimization benefits and maintai ning the stability of operating
schedules.

The basic idea of the RR algorithm is to sequentially remove
individual trips on each route and then try to find the best way
to reinsert them back on the routes. The following is the general
procedure of the algorithm:

1. Select vehicle (route) k from the fleet, and do the following:
a. Sdlect tripi that isyet to be picked up by vehiclek, and do
the following:

(1) Removetripi from route k and update its schedule.

(2) Find all feasible ways in which trip i can be inserted
into vehicle k. Keep the minimum insertion cost (Cy)
and the associated schedule. If itisnot feasibletoinsert
tripi into vehiclek, set C, = INFINIT.

(3) Finddl feasiblewaysinwhichtripi can beinsertedinto
each of theremaining vehiclesof thefleet. Find the vehi-
cle(r) that resultsin aminimum insertion cost. Keep the
minimum insertion cost (C,) and the associated vehicle
and schedule. If it is not feasibleto insert trip i into any
of the remaining vehicles, set C, = INFINIT.

(4) If C- C,>D, select vehicler for inserting the tripi or
€else select the same vehicle (k) for thetripi.

b. If there are still trips left to be examined, i =i + 1 and go

back to a.

2. If there are still routes left to be examined, k = k + 1 and go
back to 1. Otherwise, stop.

Notethat the RR algorithm includes a parameter A that can be used
to control the flexibility allowed in aternating existing schedules
during reoptimization. Using alarge A value implies that priority is
given to maintaining schedule stability. Another parameter associ-
ated with reoptimization isthe timeinterval in which RR isinvoked
during simulation. Consequently, the RR algorithm effectiveness
depends on these two parameters, and optimal parameter values may
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be identified via an extensive computational simulation analysis.
Finally, the results from the RR algorithm depend on the order in
which the vehicles (routes) are selected for reoptimization. Inthe cur-
rent implementation, vehicles were selected in a descending order,
from the earliest to the latest insertion in RR.

SIMULATION EXPERIMENTS AND RESULTS

Results are presented of the simulation experiments conducted to
examinethedifferencein paratransit operationa performance between
systems with and without AVL and CAD. The experiments were
performed using a set of hypothetical cases and areal-life example.

The hypothetical cases were generated on the basis of the
following specifications:

1. Two service areas—10 km? and 20 km?. Each areais covered
by a uniform-grid road network, with al neighboring nodes (inter-
sections) connected by two links, onein each direction. Each link is
500 mlong and thetravel speed is 30 km/h. The scheduling algorithm
uses rectangular distance and atravel speed of 30 km/h to calculate
travel time.

2. Trip origins and destinations are uniformly distributed over
the service area with desired pickup or drop-off time uniformly
distributed within the 2-h service period from 7:00 to 9:00 a.m.

3. For each casg, tripsare divided into two groups according to a
given percentage—advance reservation trips and real -time demand
trips.

4. Thefleet vehicles are assumed to be identical, with a seating
capacity of 10 passengers and unlimited fleet size fleet.

Thereal-life example consists of aweekday off-peak service cov-
ered by the Disabled Adult Transportation System in Edmonton,
Alberta, Canada. Two cases were used—460 trips for the off-peak
period (11:00 am. to 1:00 p.m.) and 570 tripsfor the afternoon peak
period (3:00 to 5:00 p.m.). To model real-time demand trips, the
originad list of tripswas divided into reservation trips and real-time
demand trips. The origina trip database did not include the dwell
time required at each trip stop; therefore a 1-min dwell time was
added to each pickup and drop-off stop. A fleet of vehicles, eachwith
10 seats, provides the service. In scheduling, travel times between
stops are estimated on the basis of rectangular distance and an aver-
age travel speed of 30 km/h. The road network includes al arterial
streetsand freewaysin the servicearea. Travel timeon each link was
assumed to be deterministic on the basis of the posted speed limit
associated with thelink. Although the hypothetical scenario assumes
auniform distribution of tripsover aservice area, the Edmonton cases
represent more redlistic situations in which trip clustering is taken
into account.

The routing and scheduling objective in both static and dynamic
scheduling was assumed to minimize total travel time only. A maxi-
mum 90-min ride time and amaximum 30-min servicetimedeviation
were used in scheduling the reservation trips. In real-time dynamic
scheduling, the maximum waiting time was 30 min for demand trips
and 10 min for reservation trips. These constraints define the mini-
mum level of service that must be guaranteed for each test case. Note
that in all tests, an unlimited fleet with a large seating capacity was
used to eliminate the effect of capacity constraints and the possibility
of any trip rgjection. Thus, the vehicle productivity measure can be
approximately used asthe sole criterion in comparing system costsfor
different scenarios.
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FIGURE 2 Relationship between productivity improvement from
en route diversion and proportion of real-time trips (service
area: 10 km?; hypothetical cases with trip density = 0.5

to 1.5 trips/h/km?)

Benefits from En Route Diversion

AVL benefitsthat may accrue from en route diversion are identified.
The hypothetical operating environments were first used for the sen-
sitivity analysis. Threelevels of demand with trip densities of 0.5, 1.0
and 1.5trips/h/km? (corresponding to atotal of 100, 200, and 300trips,
respectively), were considered, with the percentage of demand trips
varying from 10 to 50 percent. At each demand level, three random
sets of trips were generated to represent the variation in trip distri-
bution. Each trip was assumed to have a 1-min pickup and drop-off
dwell time. No travel time variation was considered, and the peri-
odic reoptimization was not applied in this analysis. Each case was
simulated twice—once with AVL (allowing en route diversion) and
oncewithout AV L. Theresulting statisticswere compiled for further
analysis.

Figure 2 shows the relationship between the percentage increase
in productivity from en route diversion and the percentage of demand
tripsinthe 10 km? service area. Three observations can be madefrom
these results. First, AVL systems have a clear advantage over sys-
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tems without AVL as far as vehicle productivity. The average
increasein vehicle productivity ranged from 1.7 to 3.5 percent, with
8.8 percent as the highest observed increase.

Second, the relative increase in productivity appears to be an
increasing function of the proportion of demand trips, with an approx-
imate 1 percent productivity improvement, on average, for every
20 percent increase in demand trips. This relationship is somewhat
expected, because the higher the real-time demand, the more oppor-
tunities for en route diversion and thus the more advantageous it
isfor an AVL system.

Third, the benefit is highly case dependent, with productivity
improving from 2.5 to 8.8 percent. For 5 out of 27 cases, a
decrease in productivity was observed, indicating that AVL had
adversely affected system performance. Such performance varia-
tion is expected, however, because the relative advantage of an
AVL system depends on the formation and location of the active
routes and demand trips. Some combinations have better potential
than others for travel time savings using en route diversion. Fur-
ther, in a dynamic system, a decision made at the present affects
the future state of the system. As a result, whereas a dynamic
assignment sol ution is advantageousto an AVL system under cur-
rent conditions, it may be less desirable in the future when other
demand trips are added.

Productivity alsoimproved in thereal-life example of Edmonton,
Alberta, for three hypothetical real-timetrips, asshownin Figure 3.
The average productivity increased from 2 to 4 percent for off-peak
hours and from 5 to 7 percent for the afternoon peak hours.

Productivity improvement from the en route diversion strongly
correlates with the size of the service area and trip density, as
shown in Figure 4. This result was obtained in simulating the two
service areas under three different levels of trip density, a fixed
proportion of demand trips (20 percent), and a link travel time
coefficient of variation (COV, defined as the standard deviation
divided by the mean) of 0.2. Two patterns can be clearly identified.
First, for agiven service area, the average productivity increased as
thetrip density increased, which is expected as higher trip density
means more diversion opportunities. Second, as far as improved
productivity, en route diversion ismore beneficial inlarger thanin
smaller service areas. The average productivity increase was as

—m.. With en-route diversion

AN

w
o

—— Without enroute diversion

od
o

Vehicle productivity
(trips/hour)

NG
NS

32 T T
0% 5% 10%

\} Off-peak case

15% 20% 25% 30%

Percentage of real-time demand trips

FIGURE 3 Relationship between productivity improvement from en route diversion and
proportion of real-time demand trips (Edmonton cases).
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FIGURE 4 Relationship between productivity improvement from en route diversion and
trip density (demand trips = 20 percent, COV = 0.2).

high as 12 percent for the 20 km? area and only 4 percent for the
10 km? area.

Finally, a noticeable advantage appears evident as far as system
efficiency using en route diversion for any given percent of demand
trips, productivity decreases as the proportion of demand trips
increases (Figure 3). Thisfinding seemsto indicate no overall ben-
efit results from accepting real -time reguests. However, the benefit
from accepting real-time trips should be considered with regard to
improved customer convenience and a potential reduction in trip
cancellation, as discussed by Fu in a paper in this Record.

Benefits from Reduction in Dwell Time

Onepossibleeffect of AVL and CAD on paratransit operationsisthe
potential to reduce the time a vehicle stops when picking up a cus-
tomer. The objective of this section isto analyze the potential effect
of this hypothetical AVL and CAD effect on the productivity of a
paratransit system is anayzed. Simulations were performed on the
hypothetical cases generated at three levels of trip density (0.5, 1.0,
and 1.5trips/h/knv) in the 10 km? service areaand for the Edmonton
off-peak hours of operation. Each case included 20 percent of
demand trips and no travel time variation. Also, each trip was
assumed to have a drop-off dwell time of 2 min and a pickup dwell
time of 4, 3.5, 3, or 2 min.

Figure 5 presentsthe simulation results. Curvesrepresent therela-
tionship between the improvement in productivity and percentage
reduction in pickup dwell time. Compared with the results from
dynamic scheduling, the potential benefit generated by AVL and
CAD from reduced dwell time is much more substantial. A small
change in dwell time from 4 to 3.5 min (12.5 percent reduction)
increased productivity by more than 5 percent. An improvement of
morethan 10 percent could be attained if the pickup dwell timewere
reduced by 25 percent (from 4 to 3 min). The simulation results of
the Edmonton off-peak cases show productivity increases of 4 and
6 percent, respectively.

Benefits from Periodic Reoptimization

The objective of periodic reoptimization is to revise preestablished
schedulesin response to changesin system conditions. Any benefits
from reoptimization can be expected to depend on the magnitude and
frequency of variability in system conditions. Empirical evidenceis
presented that was obtained from simulation experiments with vari-
ations resulting from travel time and real-time requests. The simula-
tions were performed for the 10 km? area, with each case having
200 trips generated at atrip density of 1.0 trips/h/knm?. The interval
for reoptimization was set to 30 min, which was identified as an
appropriate value after aset of test runs. The reoptimization parame-
ter A was set to zero, meaning that the reoptimization algorithm con-
sidered only the travel time benefit and did not consider the mainte-
nance of schedule stability. The en route diversion function was
applied for all caseswith reoptimization, and vice versa.

The system variation by adding real-time demand trips is first
considered. Cases with a different percent of real-time trips were
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FIGURE 5 Relationship between increase in vehicle productivity
and reduction in pickup dwell time.
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simulated in adeterministic network. Figure 6 showstherelationship
between the increase in vehicle productivity (relative difference in
vehicle productivity between systems with and without periodic re-
optimization) and the proportion of real-time trips. Although system
productivity is generally a decreasing function of the percent of real-
time trips with and without reoptimization, the relative benefit from
reoptimization increases as the variation in system conditions, repre-
sented by the percent of real-time requests, increases. The relative
improvement in vehicle productivity from reoptimization was 4 per-
cent with no real-timetripsand increased to ashigh as 25 percent with
30 percent real-timetrips. Notethat someimprovement may stemfrom
the en route diversion capability when scheduling real-time requests.

The effects of travel time variations on paratransit performance
arenext analyzed. Simulated cases had different levelsof link travel
time variability, asrepresented by the COV ranging from 0.0t0 0.3.
To isolate the effects caused by travel time variation, no real-time
trips were considered in this analysis. Figure 7 shows the relative
increase in vehicle productivity due to reoptimization as afunction
of link travel time COV. It isinteresting to observe that the relative
benefit due to reoptimization wasinsensitiveto link travel timevari-
ation, which somewhat contradicted intuition. One explanation for
this result is that, while the real-time reoptimization function can
take advantage of knowing the current locations of the servicefleet,
it does not gain any additional accuracy in travel time estimates as
compared to the cases without reoptimization. If estimates on travel
times could beimproved in real time and used in the reoptimization
process, improved vehicle productivity could be expected (5).

In terms of quality of service to clients, periodic reoptimization
was found to have noticeabl e benefits and the benefitswere strongly
correlated to the travel time variability. Figure 8 shows the means
and standard deviations of pickup and drop-off lateness under the
scenarios of with or without periodic reoptimization as functions of
link travel time COV. As expected, with an increase in COV, the
average lateness and the variation of the lateness also increased; con-
sequently, the benefit of real-time reoptimization also increased.

CONCLUSIONS

This study was conducted to quantify the potential benefits of para-
transit systemswith AVL and CAD. A simulation model capable of
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representing these technology components was applied. Many cases
representing variations in operating characteristics, such as service
area, demand intensity, and percent of real-timetrips. Thesimulation
results provide the following insights:

1. Theeffectivenessof AVL and CAD systems strongly depends
on the operating environment and on how information made avail-
able with AVL and CAD is used. The implication of thisfinding is
that conclusionsfrom limited case studies should betaken cautiously
for any generalization.

2. Inview of the anticipated level of real-time demand likely to
be accepted by paratransit agenciesin the near future, the AVL ben-
efit resulting solely from en route diversion seemsto belimited. The
simulation results show that the average increasein productivity was
less than 4 percent, although increases exceeding 8 percent were
also observed. Decreased productivity was also found for afew sim-
ulation cases, implying that increased efficiency may not always
result from using AVL.

3. If AVL and CAD can help reduce customer dwell time, sig-
nificant benefits may be realized. More than a 10 percent produc-
tivity improvement could be attained if the pickup dwell time were
reduced by 25 percent.

4. Significantly improved productivity is attainable if AVL and
CAD can be used in implementing real-time, periodic reoptimiza-
tion of vehicle schedules. The simulation experiments showed that
the relative improvement was closely related to the proportion of
real-time trips and was less related to travel time variation. Also,
real-time reoptimization was benefited clients by improving on-time
performance, and the relative benefit was highly correlated to travel
time variability.

Finally, the simulation analysis performed in this study islimited
in representing diverse operating conditions (e.g., size and shape of
service area), service policies (e.g., maximum ride deviation and
response time), and dispatch strategies (e.g. form and frequency of
reoptimization). More extensive research istherefore needed before
any definite generalizations can be made.
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